The novel Scientific Machine Learning paradigm for solving the Groundwater Flow Equation

Wednesday June 7, 2023 - 14.30 (GMT+1)

Salvatore Cuomo

Dipartimento di Matematica e Applicazioni "Renato Caccioppoli" 




Abstract: In recent years, Scientific Machine Learning (SciML) methods for solving partial differentialequations (PDEs) have gained wide popularity. Within such a paradigm, Physics-InformedNeural Networks (PINNs) are novel deep learning frameworks for solving forward and inverse problems with non-linear PDEs. Recently, PINNs have shown promising results in different application domains. In this paper, we approach the groundwater flow equations numerically by searching for the unknown hydraulic head. Since singular terms in differential equations are very challenging from a numerical point of view, we approximate theDirac distribution by different regularization terms. Furthermore, from a computationalpoint of view, this study investigate how a PINN can solve higher-dimensional flow equations. In particular, we analyze the approximation error for one and two-dimensional casesin a statistical learning framework. The numerical experiments discussed include one andtwo-dimensional cases of a single or multiple pumping well in an infinite aquifer, demonstrating the effectiveness of this approach in the hydrology application domain.